Nitrogen Reduction to Ammonia by a Phosphorus-Nitrogen PN <sup>3</sup> P-Mo(V) Nitride Complex: Significant Enhancement via Ligand Postmodification

نویسندگان

چکیده

Open AccessCCS ChemistryCOMMUNICATIONS6 Dec 2022Nitrogen Reduction to Ammonia by a Phosphorus-Nitrogen PN3P-Mo(V) Nitride Complex: Significant Enhancement via Ligand Postmodification Delong Han, Priyanka Chakraborty, Mei-Hui Huang, Li Yang, Hao Théo P. Gonçalves, Abdul Hamid Emwas, Zhiping Lai, Jr-Hau He, Aleksander Shkurenko, Mohamed Eddaoudi and Kuo-Wei Huang Han Division of Physical Science Engineering, King Abdullah University Technology, Thuwal 23955 KAUST Catalysis Center, Google Scholar More articles this author , Chakraborty Yang Gonçalves Emwas Core Lab, Lai Advanced Membranes Porous Materials Research He Department City Hong Kong, Kowloon 999077 Shkurenko *Corresponding author: E-mail Address: [email protected] Agency for Science, Research, Institute Engineeringand Sustainability Chemicals, Energy Environment, Singapore 138634 https://doi.org/10.31635/ccschem.022.202202385 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd favoritesDownload CitationsTrack Citations ShareFacebookTwitterLinked InEmail Efforts develop organometallic complexes catalytic nitrogen reduction have seen significant progress in recent years. However, the strategies improving activity homogenous catalysts mainly focused on alternating ligands metals. Herein, we report that stability PN3P-Mo pincer complex ( 2) toward dinitrogen (N2) were greatly enhanced through postmodification PN3P framework its parent 1). A high ratio NH3/Mo (3525) was achieved presence SmI2 as reductant. In sharp contrast, 1 only afforded an 21. Moreover, when supported anionic ligand, 2 furnished oxidation state Mo(V)-nitride N2 cleavage plausible key intermediate process, suggesting cycle may involve different states (II/V) from those with 10-π electron configuration literature. Download figure PowerPoint Introduction The annual production approximately 180 million tons NH3 consumes roughly 1–2% global energy supply.1,2 It is thus desirable alternative routes produce under milder conditions efficient environmentally friendly manner. Organometallic been investigated decades search potent fixation.3–10 After breakthrough Yandulov Schrock 2003 successfully transform into cobaltocene reducing agent Mo catalyst ambient (Figure 1a),11 various complexes, such Fe,12–16 Mo,17–19 Co,20 V,21 Re,22–24 employed investigation reactions (NRRs). Among these combinations metal-ligand platforms, Nishibayashi co-workers first demonstrated pincer-type could serve highly reductive proper proton sources 1b),25 thereby stimulating more research studies 1).20,26–31 despite contributions scientific community, exploring potential has restricted conventional synthetic methods. Figure | Selected NRR. We developed series PN3(P) where acidic N–H spacer, compared C–H counterparts,32–34 makes transformation between dearomatized aromatized forms readily accessible hydrogenative dehydrogenative reactions.35,36 Very interestingly, allow ligand afford new class second-generation are difficult synthesize methods (Scheme This completely lose properties reversible dearomatization rearomatization, but appear be electron-donating metal center stabilize centers higher states.37,38 feature modification provide opportunity explore states.39,40 case NRR, previous suggest two pathways involving containing terminal or bridging ligand(s).41–44 Higher activities observed cleaved nitride possessing positive charge.17,45 Therefore, offer some advantage over neutral ligand. Scheme Synthesis complexes. During our study influences merits NRR comparing 1, group reported combination reductant ethylene glycol source. An N-heterocyclic carbene-based catalyzed (4350 NH3/equiv, 1e) condition proton-coupled electron-transfer (PCET) process.45 offers us appropriate platform examine mild conditions. prepared precursor 1)17 precatalyst NH3. Meanwhile, contrast ligands, PNP PPP, formation Mo(IV) 2a),17,26 Mo(V) 3), derived 2, catalytically active species 2b). Pincer Mo-nitride formed during reduction. Results Discussion Complex synthesized according literature procedure.46 As expected, adopts meridional coordination mode three chloride ions connected one plane vertical 3, left). treating excess amounts t-BuOK ethyl iodide 1),39 structure confirmed X-ray crystallographic analysis right).a molecular besides tridentate (one amide N phosphine P atoms), also coordinated oxo modified addition groups pyridine backbone. (t-Bu2P)2Mo(O)I moiety disordered positions (see Supporting Information details). generated replacing KH base otherwise similar conditions, no product found toluene used solvent, abstract oxygen tetrahydrofuran (THF) form Mo=O functionality 1-butene S3). 3 Molecular (left) (right). Thermal ellipsoids shown at 30% probability level. Only atoms part shown. For clarity, selected labeled all solvent molecules hydrogen (except NH) omitted. bonds (Å): Mo1–N1 2.226(2), Mo1–P1 2.606(1), Mo1–P2 2.583(1), Mo1–Cl1 2.417(1), Mo1–Cl2 2.450(1), Mo1–Cl3 2.391(1), N2–C1 1.377(3), N3–C5 1.378(3). angles (°): P1–Mo1–P2 152.13(2), N1–Mo1–Cl2 166.75(6), Cl1–Mo1–Cl3 168.78(3). Mo1A–N1 2.139(2), Mo1A–P1A 2.469(1), Mo1A–P2A 2.467(1), Mo1A–O1A 1.658(2), Mo1A–I1A 2.770(1), N2−C1 1.291(4), 1.286(4). P1A–Mo1A–P2A 146.39(4), N1–Mo1A–I1A 146.21(6). Interestingly, N1–Mo1 bond distance (2.226(2) Å) longer than (2.139(2) Å), stronger ability center. lengths (1.377(3) 1.378(3) Å, respectively) (1.291(4) 1.286(4) respectively), which agrees well double characteristics 2. Furthermore, aromaticity six-numbered ring lost remaining (C3–C4 1.329(4) displayed typical character (1.658(2) Å).47 angle became smaller: 152.13(2) 146.39(4) At beginning study, bases temperatures optimized employing source (Table 1).48 reaction 50 °C rather KOH after best yield 94% entry 4).b applied same condition, 33% 1), significantly lower Although changed. Next, SmI2, sources. H2O 79% 2). Table Optimization Reaction Conditions NRR.a Entry Base Temperature Yield (%)c NH3/equivd H2 No r.t. 0 7 4 KOHb 71 42 tBuOK 94 56 5 40 86 52 6 73 44 tBuOKe 8 tBuOKf 91 55 aReaction condition: (2 mg, 2.6 μmol), (470 μmol, equiv based 2), catalyst), atmosphere, h. (8.9 mmol) added reaction. detected online gas chromatography (GC) equipped thermal conductivity detector (TCD), flame ionization (FID) mechanizer quantification. bKOH 30 wt %, 10 mL. cThe calculated dNH3/equiv complex. Each repeated least twice. e40 min. f1 Catalytic Different Proton Sources Reductants.a Catalyst Source (%)b NH3/equivc HO(CH2)2OH 33 21 20 79 47 CH3OH 93 CH3CH2OH 48 CF3CH2OH 22 (CH3)2CHOH 2,3-Butanediol 12 1,2-Cyclohexanediol 11 9d 83 ± 540 18 10d 39 228 11e 59 3525 61 13 12f [Lut-H][OTf] 13f 14g 15h (2.6 catalyst) reductant, μmol dihydric alcohol, 940 monohydric 360 equiv, respectively, mL THF heated GC TCD, FID bThe cNH3/equiv d0.26 used. e0.026 used, overnight. Repeated four times. fCatalyst (4.6 KC8 (100 (120 room temperature. gKC8 hCp2Co (Cp, cyclopentadienyl) μmol). up 93% obtained methanol (MeOH) 3). Intriguingly, yields decreased 48% 6% ethanol 2-propanol respectively entries 6). strong electron-withdrawing even (5%, 5). trend 2,3-butanediol 1,2-cyclohexanediol utilized; 12% 2% produced, 8). noteworthy decreasing loading 0.26 still gave excellent 83% 9). MeOH employed, 39% observed. Further 0.026 resulted 59% NH3/equiv 11). tested using KC8, producing 11% 13). When identical 12). Notably, cases, consistently 1. Employing Cp2Co 3% 14 15), implying other reductants alcohol not suitable MeOH. 15N2 procedure isotopically 15NH3 identified 1H NMR spectrum S1). result larger-scale experiment carried out, 383 mg NH4Cl isolated 81% Section 1.2). occur N2-bridged intermediate,41,49 fate investigated. treated stoichiometric amount °C, conversion inseparable mixture S6), without To identify whether complex, mixing NaI 3-Cl 5) salt, Me3SiN3 2).50 infrared spectra showed characteristic peaks Mo≡N S4). Thus, coordinately unsaturated strongly supported. Additionally, crystals both single-crystal analysis. cell parameters distinct terms magnetism, NMR, mass, elemental analysis, color exhibits distorted square pyramidal 4); loses aromaticity, arms become shorter 1.370(5) Å 1.375(5) 4-I 1.304(7) 1.286(7) fall range C=N bond. becomes smaller 151.06(3) 148.63(6)°. declines 2.199(3) 2.190(4) Mo1–N4 decreases 1.637(4) 1.629(5) Å. important note 1.644 slightly 1.635 4, indicating postmodified system better subjected unmodified 13% yield, though shares core 3. 90% 1.304(7), 1.286(7), 2.190(4), Mo1A–N1A 1.629(5), 2.513(2), 2.514(2), 2.720(1). 148.63(6), 152.2(1). (right) (left). 3-Cl, 1.289(9), 1.297(8), Mo1A–N4A 1.644(7), 2.196(5), Mo1A–Cl1A 2.368(2), 2.524(3), 2.504(3). N1–Mo1A–Cl1A 146.9(2), 148.42(9). 4-I, except H3, non-coordinated anion omitted clarity. 1.370(5), 1.375(5), 2.199(3), 2.519(1), 2.517(1), Mo1–I1 2.702(4), 1.637(4). 151.06(3), N1–Mo1–I1 155.66(8). gain further insights influence postmodification, out. transformed 4-I) PNP-Mo(IV) analogous reaction,45 reduced ligands.46 possesses center, structurally 20% insoluble precipitates. fact there suggests poor condition. These observations indicate affords improved corresponding resulting performance Syntheses 4. Stoichiometric propose cyclic experimental reports 3).17,30,51 First, dissociates receives electrons protons reactive PN3P-MoII-I (MoI, S7). Two MoI then bridge give penta-coordinated bimetallic Int, followed 3.17,26,30,51–53 that, protonated PCET regenerate Int N2. change II V process (between Int), I IV counterparts.45 Of before,43,50,51,54 Mo(II) Mo(V)≡N recently demonstrated.25,28 results calculations proceed II/V cycle, cannot rule out involvement experimentally.3 mechanism Conclusion 3) influenced structures, especially “unmodified” counterparts 4) reductant: >90%, respectively; number achieved. Supported converted cleaving Compared much-less cycle. broader working again demonstrate profound effect modification. system. enhancement Investigation applications fixation ongoing will due course. Footnotes According experience known post small carbon next C1. Highly pure recrystallization. b shows Sm gives alkoxide dimer reaction, use hydroxide needed destroy Sm-NH3 release See refs 45 48. available includes section supporting figures. Conflict interest authors declare conflict interest. Acknowledgments grateful service NOOR Shaheen High-Performance Computing Facilities, financial support Technology (KAUST). acknowledge Dr. Xingzhu Chen Amy Perez graphic design. References Gruber N.; Galloway J. N.An Earth-System Perspective Global Nitrogen Cycle.Nature2008, 451, 293–296. Giddey S.; Badwal S. Munnings C.; Dolan M.Ammonia Renewable Transportation Media.ACS Sustain. Chem. Eng.2017, 5, 10231–10239. Creutz E.; Peters C.Catalytic Fe–N2 Featuring C-Atom Anchor.J. Am. Soc.2014, 136, 1105–1115. Hirotsu M.; Fontaine P.; Epshteyn A.; Sita L. R.Dinitrogen Activation Ambient Temperatures: New Modes PhSiH3 Additions “End-On-Bridged” [Ta(IV)]2(μ-η:η1-N2) Bis(μ-nitrido) [Ta(V)(μ-N)]2 Product Derived Facile Bond Cleavage.J. Soc.2007, 129, 9284–9285. 5. Guru M. Shima T.; Hou Z.Conversion Dinitrogen Nitriles Multinuclear Titanium Framework.Angew. Int. Ed.2016, 55, 12316–12320. 6. Camp Pécaut J.; Mazzanti M.Tuning Uranium–Nitrogen Multiple Formation Ancillary Siloxide Ligands.J. Soc.2013, 135, 12101–12111. 7. Falcone Barluzzi L.; Andrez Fadaei Tirani F.; Zivkovic I.; Fabrizio Corminboeuf Severin K.; M.The Role Bridging Ligands Functionalization Uranium Multimetallic Complexes.Nat. Chem.2019, 11, 154–160. 8. Wang Deng Z.-H.; Xie S.-J.; Zhai D.-D.; Fang H.-Y.; Shi Z.-J.Synthesis Arylamines N-Heterocycles Direct Nitrogenation Using N2.Nat. Commun.2021, 12, 248–255. 9. Fajardo Nitrogen-to-Ammonia Conversion Osmium Ruthenium Complexes.J. Soc.2017, 139, 16105–16108. 10. Z.; Z.Synthesis Diverse Transformations Dititanium Hydride Bearing Rigid Acridane-Based PNP-Pincer Ligands.Angew. Ed.2020, 59, 8635–8644. 11. D. V.; R. R.Catalytic Single Molybdenum Center.Science2003, 301, 76–78. 12. Schild C.Light Enhanced Fe-Mediated Fixation: Mechanistic Insights Regarding Elimination, HER, Generation.ACS Catal.2019, 9, 4286–4295. 13. Kuriyama Arashiba Nakajima Matsuo Y.; Tanaka H.; Ishii Yoshizawa Y.Catalytic Transformation Hydrazine Iron-Dinitrogen Complexes Ligand.Nat. Commun.2016, 7, 12181–12190. 14. Matson B. D.; C.Fe-Mediated HER vs N2RR: Exploring Factors That Contribute Selectivity P3EFe(N2) (E = B, Si, C) Model Systems.ACS Catal.2018, 8, 1448–1455. 15. Chalkley Del Castillo T. Roddy N2-to-NH3 Fe Lower Driving Force: Proposed Metallocene-Mediated PCET.ACS Cent. Sci.2017, 217–223. 16. Sekiguchi Eizawa Y.Synthesis Reactivity Anionic Methyl- Phenyl-Substituted Pyrrole-Based PNP-Type Toward Fixation.Chem. Commun.2017, 53, 12040–12043. 17. Fixation Cleavage Nitrogen–Nitrogen Triple Under Conditions.Bull. Soc. Jpn.2017, 90, 1111–1118. 18. Y.Azaferrocene-Based Ligand: Molybdenum, Chromium, Iron Fixation.Eur. Inorg. Chem.2016, 4856–4861. 19. Hoffman Lukoyanov Z.-Y.; Dean R.; Seefeldt C.Mechanism Nitrogenase: Next Stage.Chem. Rev.2014, 114, 4041–4062. 20. Y.Direct Catalyzed Cobalt 14291–14295. Imayoshi Y.Vanadium-Catalyzed Silylamine Conditions.Chem. Lett.2017, 46, 466–468. 22. Lindley van Alten Finger Schendzielorz Würtele Miller A. Siewert Schneider S.Mechanism Chemical Electrochemical Splitting Rhenium Complex.J. Soc.2018, 140, 7922–7935. 23. Klopsch Milde B.; Werz S.Dinitrogen Coordination Sphere Rhenium.J. 6881–6883. 24. Kinauer S.Conversion Acetonitrile Conditions.Angew. 4786–4789. 25. Miyake Y.A Leads Ammonia.Nat. Chem.2011, 120–125. 26. Liao Q.; Cavaillé Saffon-Merceron Mézailles N.Direct Silane: Mediated Tridentate Phosphine Fragment.Angew. 128, 11378–11382. 27. Keane Farrell W. Yonke Zavalij R.Metal-Mediated Production Isocyanates, R3EN=C=O Dinitrogen, Carbon Dioxide, R3ECl.Angew. Ed.2015, 54, 10220–10224. 28. Kendall Johnson Bullock Mock T.Catalytic Silylation N2H4 Net Hydrogen Atom Transfer Reactions Chromium P4 Macrocycle.J. 2528–2536. 29. Vanadium Complexes.Angew. Ed.2018, 57, 9064–9068. 30. Hebden Takase Müller P.Cleavage (t-BuPOCOP)molybdenum(IV) Nitride.Chem. Commun.2012, 48, 1851–1853. 31. Wickramasinghe Ogawa P.Reduction Diamido 9132–9135. 32. Hu Ben-David Milstein D.General Amino Acid Salts Alcohols Basic Water Liberating H2.J. Soc.2016, 138, 6143–6146. 33. Das U. Kumar D.Manganese Hydrogenation Carbamates Urea Derivatives.J. Soc.2019, 141, 12962–12966. 34. Gunanathan D.Metal–Ligand Cooperation Aromatization-Dearomatization: Paradigm “Green” Catalysis.Acc. Res.2011, 44, 588–602. 35. Lupp K.-W.PN3(P)-Pincer Complexes: Cooperative Beyond.ACS 1619–1629. 36. Zheng K.-W.A Class PN3-Pincer Metal-Ligand Catalysis.Coord. Rev.2015, 293-294, 116–138. 37. Yao X.; K.-W.Nitrogen PN3P-Pincer Nickel Putative Nitrido Intermediate.Chem. Commun.2018, 3940–3943. 38. Zhang Zhou K.-W.Interrogating Steric Outcome Heterolysis: In-Plane Effects Regioselective Protonation Ligand.Dalton Trans.2019, 12817–12821. 39. Pan K.-W.Synthesis Group Metal Unsymmetrical Through Post-Modification: Structure Reactivity.J. Organomet. Chem.2017, 845, 25–29. 40. Guan K.-W.CO2 Iridium Elucidation Deactivation Pathway.Dalton 12812–12816. 41. Yamout Ataya Hasanayn Holland Goldman S.Understanding Terminal Versus End-on Transition Soc.2021, 143, 9744–9757. 42. Chatt Pearman Richards L.The Mono-Coordinated Protic Environment.Nature1975, 253, 39–40. 43. Sasada Y.Unique Behaviour Dinitrogen-Bridged Dimolybdenum Towards Commun.2014, 3737–3746. 44. Engesser Kindjajev Junge Krahmer Tuczek F.A Chatt-Type One Site Ammonia.Chem.-Eur. J.2020, 26, 14807–14812. 45. Ashida Y.Molybdenum-Catalysed Samarium Diiodide Water.Nature2019, 568, 536–540. 46. Stucke Näther F.Molybdenum Ligands: Synthesis, Characterization, Application Synthetic Chem.2018, 2018, 5108–5116. 47. Sun Zhao Prior Elsegood Xing Redshaw C.Mono-Oxo Molybdenum(V) Tungsten(VI) Chelating Aryloxides: Ring Opening Polymerization Cyclic Esters.Dalton 1454–1466. Kondo Kikuchi Kakimoto Practical Gas, Molybdenum–PCP Complex.Synthesis2019, 51, 3792–3795. 49. Bruch Q. Connor G. C.-H.; Mayer M.Dinitrogen Ammonium Utilizing Light Proton-Coupled Electron Transfer.J. 20198–20208. 50. Kinoshita Activity Molybdenum–Nitride Ligands.Eur. Chem.2015, 2015, 1789–1794. 51. Silantyev Förster Schluschaß Abbenseth Volkmann Holthausen Coupled Protonation.Angew. Ed.2017, 56, 5872–5876. 52. Laplaza C. Cummins C.Dinitrogen Three-Coordinate Molybdenum(III) Complex.Science1995, 268, 861–863. 53. Tsai Y.-C.; C.Base-Catalyzed Amides.Inorg. Chim. Acta2003, 345, 63–69. 54. Use Molybdenum-Nitride Triphosphine Catalysts.J. Soc.2015, 137, 5666–5669. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 0Issue 0Page: 1-8Supporting Copyright & Permissions© 2022 Chinese SocietyKeywordsligand postmodificationnitrogen reductionPN3Psamarium(II) iodidemolybdenumAcknowledgmentsWe Downloaded 331 times PDF downloadLoading ...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of phosphorus-nitrogen bonds by reduction of a titanium phosphine complex under molecular nitrogen.

The reduction of high oxidation state metal complexes in the presence of molecular nitrogen is one of the most common methods to synthesize a dinitrogen complex. However, the presence of strong reducing agents combined with the poor binding ability of N2 can lead to unanticipated outcomes. For example, the reduction of [NPN]ZrCl2(THF) (where NPN = PhP(CH2SiMe2NPh)2) with KC8 under N2 leads to t...

متن کامل

Nitrogen Fixation via a Terminal Fe(IV) Nitride.

Terminal iron nitrides (Fe≡N) have been proposed as intermediates of (bio)catalytic nitrogen fixation, yet experimental evidence to support this hypothesis has been lacking. In particular, no prior synthetic examples of terminal Fe≡N species have been derived from N2. Here we show that a nitrogen-fixing Fe-N2 catalyst can be protonated to form a neutral Fe(NNH2) hydrazido(2-) intermediate, whic...

متن کامل

Catalytic conversion of nitrogen to ammonia by an iron model complex

The reduction of nitrogen (N2) to ammonia (NH3) is a requisite transformation for life. Although it is widely appreciated that the iron-rich cofactors of nitrogenase enzymes facilitate this transformation, how they do so remains poorly understood. A central elementof debatehas been the exact site or sites ofN2 coordination and reduction. In synthetic inorganic chemistry, an early emphasis was p...

متن کامل

Molecular Nitrogen as a Ligand

The discovery and development of the chemistry of dinitrogen complexes are reviewed with particular reference to factors affecting their stabilities, and the implication of those factors in terms of electronic structure and energies is discussed, FIRST I must thank the organizers of this congress for their invitation to give a plenary lecture, and also I must explain my title. As you know, one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CCS Chemistry

سال: 2023

ISSN: ['2096-5745']

DOI: https://doi.org/10.31635/ccschem.022.202202385